Curvature and Temperature Measurement Based on a Few-Mode PCF Formed M-Z-I and an Embedded FBG
نویسندگان
چکیده
We have experimentally demonstrated an optical fiber Mach-Zehnder interferometer (MZI) structure formed by a few-mode photonic crystal fiber (PCF) for curvature measurement and inscribed a fiber Bragg grating (FBG) in the PCF for the purpose of simultaneously measuring temperature. The structure consists of a PCF sandwiched between two multi-mode fibers (MMFs). Bending experimental results show that the proposed sensor has a sensitivity of -1.03 nm/m-1 at a curvature range from 10 m-1 to 22.4 m-1, and the curvature sensitivity of the embedded FBG was -0.003 nm/m-1. Temperature response experimental results showed that the MZI's wavelength, λa, has a sensitivity of 60.3 pm/°C, and the FBG's Bragg wavelength, λb, has sensitivity of 9.2 pm/°C in the temperature range of 8 to 100 °C. As such, it can be used for simultaneous measurement of curvature and temperature over ranges of 10 m-1 to 22.4 m-1 and 8 °C to 100 °C, respectively. The results show that the embedded FBG can be a good indicator to compensate the varying ambient temperature during a curvature measurement.
منابع مشابه
Effects of number of freeze-thaw cycles and freezing temperature on mode I and mode II fracture toughness of cement mortar
Natural and artificial materials including rocks and cement-based materials such as concrete and cement mortar are affected both physically and chemically by various natural factors known as weathering factors. The freeze-thaw process, as a weathering factor, considerably affects the properties of rocks and concrete. Therefore, the effect of the freeze-thaw process on the physical and mechanica...
متن کاملBending Analysis of Carbon Nanotubes with Small Initial Curvature Embedded on an Elastic Medium Based on Nonlocal Elasticity and Galerkin Method
Carbon nanotubes have an important role in reinforcing nanocomposits. Many experimental observations have shown that in the most nanostructures such as nanocomposites, carbon nanotubes (CNTs) are often characterized by a certain degree of waviness along their axial direction. In the present paper, the effects of initial curvature, influence of surrounding medium that is modeled as Winkler elast...
متن کاملNumerical Analysis of Index-Guiding Photonic Crystal Fibers with Low Confinement Loss and Ultra-Flattened Dispersion by FDFD Method
In this article, perfectly matched layer (PML) for the boundary treatment and an efficient compact two dimensional finite-difference frequency-domain (2-D FDFD) method were combined to model photonic crystal fibers (PCF). For photonic crystal fibers, if we assume that the propagation constant along the propagation direction is fixed, three-dimensional hybrid guided modes can be calculated by us...
متن کاملDesign of low-dispersion fractal photonic crystal fiber
In this paper, a fractal photonic crystal fiber (F-PCF) based on the 1st iteration of Koch fractal configuration for optical communication systems is presented. Complex structure of fractal shape is build up through replication of a base shape. Nowadays, fractal shapes are used widely in antenna topics and its usage in PCF has not been investigated yet. The purpose of this research is to compar...
متن کاملAn effective approach for damage identification in beam-like structures based on modal flexibility curvature and particle swarm optimization
In this paper, a computationally simple approach for damage localization and quantification in beam-like structures is proposed. This method is based on using modal flexibility curvature (MFC) and particle swarm optimization (PSO) algorithm. Analytical studies in the literature have shown that changes in the modal flexibility curvature can be considered as a sensitive and suitable criterion for...
متن کامل